
ELEN449-504 - Microprocessor System Design

LAB 6 -- Mapping I/O Devices to the 68000

Chris Washington

ELEN 449 - 504

October 11, 2000
Design

For this lab it was necessary to design both software and hardware applications to accomplish the assigned task. In order to interface this hardware unit (LCD) with the 68000 system, we viewed the LCD as a peripheral component and used the EHIB to deliver 8-bit instructions to the LCD. However, a collection of API’s must be written and coordinated in a client program to make the interface with the LCD possible for a user who is unaware of the intricacies of the design (See ‘API User’s Guide’ below).

To begin this process, the data sheet for the LCD was examined and a set of subroutines (API) were generated to accomplish specific commands including reset, cursor position(x,y), shiftdisplay(x,y), backspace, write(string), cursorcontrol(x), displayon, and displayoff. These subroutines will process the given input parameters (if any) and write an 8-bit LCD instruction to address $70001 and/or data to address $70003. It is important to note however, that although the LCD can latch the delivered data in one R/W* cycle, it cannot process the command before the 68000 executes its next instruction. And since the is no method to read (i.e. monitor the ‘busy flag’) from the LCD in this lab, a delay loop was implemented to allow more than enough time for the LCD to complete the instruction before the client program continues.

Once these routines were generated and debugged, a master program or client program must be composed to interface these operations with a user-friendly control environment. To do this, a ‘front end’ was created to prompt the user to enter an instruction via a custom line prompt ‘LCD CONTROL> ‘. At this point, the user can enter any of the API commands described in the ‘API User’s Guide’ below. The client program will then interpret the command, determine if there is an error and continue to the appropriate API subroutine previously generated.

At this stage it was very important to take into considerations all possibilities so that no unexpected results would arise from another user unfamiliar with the format of this client program. For example, the program must be completely case insensitive. This was accomplished by clearing the 5th bit of each ASCII character via an AND command. Also, it was important to prevent an invalid argument to be processed. Since all of the instructions with arguments have specific allowable values, each input value must be verified as allowable before sending an instruction to the LCD.

Another important aspect of the client program was the parameter passing between the input stage of the program and the APIs. These allocations are clearly defined at the beginning of the program attached at the end of this report.

The hardware interface required the use on one OR gate to enable the LCD and inform it that data was ready to be delivered. This ‘glue logic’ is shown in the ‘Programs and Schematics’ section of this report.

Once all of these components were designed, tested, and debugged, corrections were made to refine the design to better accomplish the given task leading to the system displayed in lab and explained in this report.

Programs and Schematics

Questions

1. Define API. Give some examples of APIs you have worked with or know about.

API stands for Application Program Interface and is a collection of subroutines that provide a simplified interface which client programs can use to communicate with a device or subsystem they do not control. The TRAP #14 routines that we have used in this and previous labs are an example of an API.

2. Why is it necessary to include a delay loop, or monitor the 'busy' flag of the LCD after writing each opcode to the LCD device?

Although the LCD can latch the instructions sent to it in one read/write cycle, it cannot process the commands before the 68000 executes its next instruction. Therefore, a delay loop, or monitoring of the busy flag must be used to compensate for this timing limitation.

3. What improvements could be made to the LCD API?

This API is fairly simple, which is desirable for an API, however it could be improved by the addition of more commands. Also, with the current model, this API will display a general error statement when invalid data is processed, but it would be helpful to provide more detail as to what part of the input was in error via an error determining subroutine. It would also be nice to make a text loop that would continuously us the write and backspace command to allow the user to input data without typing a 4 character command before each action.

Conclusions

This lab has been the most beneficial to my understanding of the Microprocessor system design. By generating both the hardware and software aspects of this lab, I was able to see first hand the relationship between the programming and device aspects of the system. It was also very beneficial to complete a peripheral interface design. These types of interfaces are the most critical to the flexibility and usability of a microprocessor system. Although this was a relatively simple interface with a simple device, the concepts from this task are the building blocks to more complicated interfaces such as the keyboard or CRT.

START

END

See *.LIS file at end of report

LCD API User’s Guide

This API will interface the 16x2 liquid crystal character display to the Motorola 68000-microprocessor system. After invoking this program, the user will be prompted to enter a command. The list of 4 character commands, their arguments, and description of operation are as follows (all commands are passed by Data Register [D0]:

		

Command�
Arguments�
Passed through�
Description

�
�
RSET

�

<NONE>�

N/A�

LCD will be initialized to 8-bit data, the display and cursor will be turned on with a line cursor, the device will be set to increment entry mode (shift display), and the display will be cleared.

�
�
CPOS

�

x – row

y - column

�

x – [D2]

y – [D3]�

The cursor position will be moved to row (x) column (y). NOTE: x must be ‘1’ or ‘2’ since the LCD only has two rows. y can be any integer because the operation will wrap to the other end of the same row if the column limit is exceeded.

�
�
SHFT

�

d – direction

n - # spaces

�

d – memory

n – [D4]�

The cursor will be shifted to the left or right (dependent on ‘d’) n spaces.�
�
BKSP

�

<NONE>�

N/A�

Moves the cursor back one space, deleting the character that was there.�
�
WRIT

�

(string to be displayed)

�

Memory�

Writes the given sting to the LCD.�
�
CRSR

�

c – must be ‘b’ for a blinking cursor, ‘l’ for a line cursor, or ‘x’ for no cursor

�

c – [D5]�

Will toggle the mode of the cursor from ‘no-cursor’ to ‘line cursor’ to ‘blinking cursor’

NOTE – this value will be stored until reset is entered or the program is terminated.�
�
DPOF

�

<NONE>

�

N/A�

Turns off the LCD

�
�
DPON

�

<NONE>

�

N/A�

Turns on the LCD and restores previous data and cursor configuration

�
�
QUIT

�

<NONE>

�

N/A�

Exits API and returns to TUTOR prompt�
�

These commands are completely case insensitive and should be entered at the ‘LCD_CONTROL>’ prompt.

Check

QUIT

Check

DPON

Check

DPOF

Check

CRSR

Check

WRIT

Check

BKSP

Check

SHFT

Check

CPOS

Check

RSET

ERROR

RETURN TO 'TUTOR' PROMPT

Convert input to all caps

Display prompt

Get input

EHIB

Initialize registers/Trap #14 MACRO/variables

LDS’

DTACK’

ENABLE’

A1

E’

RS

LCD

LCD ON

LCD OFF

ADJUST CURSOR

WRITE TO LCD

BACKSPACE COMMAND

SHIFT COMMAND

CURSOR POSITION COMMAND

RESET LCD

LCD/EHIB Hardware Interface

Chris Washington
2
12/12/01

